Geometry of Energy and Bienergy Variations between Riemannian Manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Riemannian manifolds in noncommutative geometry

We present a definition of Riemannian manifold in noncommutative geometry. Using products of unbounded Kasparov modules, we show one can obtain such Riemannian manifolds from noncommutative spinc manifolds; and conversely, in the presence of a spinc structure. We also show how to obtain an analogue of Kasparov's fundamental class for a Riemannian manifold, and the associated notion of Poincaré ...

متن کامل

The Geometry of Sub-riemannian Three-manifolds

The local equivalence problem for sub-Riemannian structures on threemanifolds is solved. In the course of the solution, it is shown how to attach a canonical Riemannian metric and connection to the given sub-Riemannian metric and it is shown how all of the differential invariants of the sub-Riemannian structure can be calculated. The relation between the completeness of the sub-Riemannian metri...

متن کامل

Harmonic Morphisms between Riemannian Manifolds

Harmonic morphisms are mappings between Riemannian manifolds which preserve Laplace’s equation. They can be characterized as harmonic maps which enjoy an extra property called horizontal weak conformality or semiconformality. We shall give a brief survey of the theory concentrating on (i) twistor methods, (ii) harmonic morphisms with one-dimensional fibres; in particular we shall outline the co...

متن کامل

The Transverse Geometry of G-manifolds and Riemannian Foliations

Given a compact Riemannian manifold on which a compact Lie group acts by isometries, it is shown that there exists a Riemannian foliation whose leaf closure space is naturally isometric (as a metric space) to the orbit space of the group action. Furthermore, this isometry (and foliation) may be chosen so that a leaf closure is mapped to an orbit with the same volume, even though the dimension o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyungpook mathematical journal

سال: 2015

ISSN: 1225-6951

DOI: 10.5666/kmj.2015.55.3.715